Discordant Classification of Transposable Elements in Segmental Duplications Raise Concerns About Subfamily Definitions
نویسندگان
چکیده
Patterson, Gilia, B.A., May 2016 Biology Discordant Classification of Transposable Elements in Segmental Duplications Raise Concerns About Subfamily Definitions Faculty Mentor: Travis Wheeler Most of the human genome comes from transposable elements (TEs), sequences of DNA that can move and insert copies of themselves throughout the genome. TE sequences both inform and complicate analyses of genomes, so it is important that TEs are annotated completely and accurately. Remnants of TEs are annotated and classified into subfamilies based on their DNA sequences. A subfamily represents all the copies generated in a burst of replication by a few closely related TEs. Wacholder et al. (2014) suggested that the current methods for representing subfamilies are not accurate and should be reevaluated. We expand on this discussion and show that many TE sequences that should belong to the same subfamily are classified into discordant subfamilies. When a segment of genome with a TE remnant is duplicated, the TE remnants in each copy are replicates and so should be assigned to the same subfamily. We identified the location and subfamily of all TEs in known segmental duplications and found that a large fraction are assigned to different subfamilies, suggesting that the current method of classifying TEs splits them too much.
منابع مشابه
Unexpected stability of mariner transgenes in Drosophila.
A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite v...
متن کاملCharacterizing regions in the human genome unmappable by next-generation-sequencing at the read length of 1000 bases
Repetitive and redundant regions of a genome are particularly problematic for mapping sequencing reads. In the present paper, we compile a list of the unmappable regions in the human genome based on the following definition: hypothetical reads with length 1 kb which cannot be uniquely mapped with zero-mismatch alignment for the described regions, considering both the forward and reverse strand....
متن کاملSuperior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive...
متن کاملSegmental Duplication Implicated in the Genesis of Inversion 2Rj of Anopheles gambiae
The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively...
متن کاملSerial segmental duplications during primate evolution result in complex human genome architecture.
The human genome is particularly rich in low-copy repeats (LCRs) or segmental duplications (5%-10%), and this characteristic likely distinguishes us from lower mammals such as rodents. How and why the complex human genome architecture consisting of multiple LCRs has evolved remains an open question. Using molecular and computational analyses of human and primate genomic regions, we analyzed the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016